Rohdy
Rohdy의 study
Rohdy
전체 방문자
오늘
어제
  • 분류 전체보기 (32)
    • 석사 이야기 (0)
    • DL Study (17)
    • Pr4AI Study (1)
    • RecSys (3)
    • GraphMining (9)
    • 논문 (2)

블로그 메뉴

  • 홈
  • 태그
  • 방명록

공지사항

인기 글

태그

  • 대학원입시
  • 로지스틱
  • logistic
  • 2020
  • 정보대학원
  • KAIST
  • 시그모이드
  • 대학원준비
  • 컨택
  • 대학원
  • gradientdescent
  • IDGL
  • 대학원컨택
  • sigmoid
  • LinearRegression
  • 연세대
  • 대학원면접
  • NeurIPS
  • ML
  • 데이터사이언스
  • gnn
  • GSDS
  • 논문요약

최근 댓글

최근 글

티스토리

hELLO · Designed By 정상우.
Rohdy

Rohdy의 study

Intro & Basic Concepts
GraphMining

Intro & Basic Concepts

2022. 9. 6. 13:53

KAIST AI 대학원 신기정 교수님의 수업인 데이터마이닝 및 소셜 네트워크 분석 수업 필기입니다.

 

Graph Machine Learning Tasks

  • Node classification: Predict the property of a node
  • Link Prediction: Predict how networks evolve, Predict whether there are missing links between two nodes
  • Graph classification: Categorize different graphs
  • Clustering: Identify densely linked clusters of nodes
  • Ranking: Measure importance of nodes
  • Many others+

Graphs (or Networks)

from. 신기정 교수님 ppt

  • \(V\): set of nodes (or vertices)
  • \(E\): set of edges (or links)

 

Type of Graphs

  • Undirected networks: Edges without directions
  • directed networks: Edges with directions

Undirected networks VS Directed networks

 

  • Unweighted networks: Edges without numbers
  • Weighted networks: Edges with numbers

Unweighted networks VS Weighted networks

  • (Unipartite) networks: one type of nodes
  • Bipartite networks: Two types of nodes, Only different types of nodes can be joined by edges

Bipartite networks

Projected / Folded Graph

Projection of a bipartite graph results in two projected graphs

Neighbors / Degree / Out and In Degree

Neighbors of node \(v\): a set of nodes adjacent to \(v\)

Degree of node \(v\): the number of neighbors of \(v\)

\(d_{out}(v)\): the number of out-going neighbors of node \(v\)

\(d_{in}(v)\): the number of in-coming neighbors of node \(v\)

  • N(1) = {2,5}              d(1) = 2         \(d_out(1)\) = 1         \(d_in(1)\) = 1
  • N(2) = {1,3,5}           d(2) = 3         \(d_out(2)\) = 1         \(d_in(2)\) = 3
  • N(3) = {2,4}              d(3) = 2         \(d_out(3)\) = 2         \(d_in(2)\) = 0
  • ...

 

Representing Graphs

Edge list: set of edges, each of which is a node pair

Adjacent list: a set of neighbors for each node

Adjacency matrix \(A\) of a unipartite undirected network \(G\)

Adjacency matrix \(A\) of a unipartite directed network \(G\)

 

Adjacency Matrices are Spares

Most entries are zero since networks are sparse! 

Use data structures and functions for sparse matrices

 

Connectivity of Undirected Graphs

Connected graph: Any two nodes can be joined by a path

Disconnected graph: made up by two or more connected componets

Strongly connected directed graph: a path from each node to every other node

Weakly connected directed graph: is connected if we disregard the edge directions

 

Hypergraphs

A hypergraph(or a hypernetwork) \(G\) consists of \(V\), \(H\) -> \(H\): set of hyperedges

'GraphMining' 카테고리의 다른 글

Kronecker Graph Model  (0) 2022.09.26
Community Guided Attachment & Forest Fire Model  (0) 2022.09.26
Basic Models  (0) 2022.09.14
Structural properties  (2) 2022.09.14
Random Networks  (0) 2022.09.14
    'GraphMining' 카테고리의 다른 글
    • Community Guided Attachment & Forest Fire Model
    • Basic Models
    • Structural properties
    • Random Networks
    Rohdy
    Rohdy

    티스토리툴바