Rohdy
Rohdy의 study
Rohdy
전체 방문자
오늘
어제
  • 분류 전체보기 (32)
    • 석사 이야기 (0)
    • DL Study (17)
    • Pr4AI Study (1)
    • RecSys (3)
    • GraphMining (9)
    • 논문 (2)

블로그 메뉴

  • 홈
  • 태그
  • 방명록

공지사항

인기 글

태그

  • 대학원입시
  • 대학원
  • 정보대학원
  • 컨택
  • NeurIPS
  • LinearRegression
  • IDGL
  • 대학원면접
  • 연세대
  • 대학원준비
  • logistic
  • 논문요약
  • KAIST
  • ML
  • gnn
  • GSDS
  • 시그모이드
  • 대학원컨택
  • 로지스틱
  • 2020
  • 데이터사이언스
  • gradientdescent
  • sigmoid

최근 댓글

최근 글

티스토리

hELLO · Designed By 정상우.
Rohdy

Rohdy의 study

Basic Models
GraphMining

Basic Models

2022. 9. 14. 20:23

KAIST AI 대학원 신기정 교수님의 수업인 데이터마이닝 및 소셜 네트워크 분석 수업 필기입니다.

 

We have now seen that densification power laws and shrinking effective diameters are properties that hold across a range of diverse networks.

 

"How do we build models of network generations of evolution?"

 

Lattice Networks

Lattice networks have High clustering coefficients, Large diameter

 

Small-world  Models

  • Small-world Model have High clustering Low diameter, Huge giant connected component.
  • Does not lead to the correct degree distribution, no heavy-tail

  1. Start with a low-dimensional regular lattice
    Has high clustering coefficient
  2. Rewire: introduce randomness for 'shortcuts'
    For each edge with prob. p move the other end to a random node

 

Preferential Attachment

  • Repeats adding a new node, create \(m\) out-links
  • Probability of linking a node \(i\) is proportional to its degree \(d_i\)

$$ P = {d_i \over \sum d_j}  $$

  • Richer gets richer model(high degree일수록 새로운 node가 붙을 확률 증가)
  • Leads to power-law in-degree distributions
  • But all nodes have equal out-degree, does not have communities

$$ P(k) \propto k^{-3} $$

 

 

Edge Copying Model

  • Power-law degree distributions
  • Generates communities
  • But, the diameter does not shrink
  1. Add a node and choose \(k\) the number of edges to add
  2. With prob \(\beta\) select \(k\) random vertices and link to them
  3. With prob \(1-\beta\), \(k\) edges are copied from a randomly chosen node

 

'GraphMining' 카테고리의 다른 글

Kronecker Graph Model  (0) 2022.09.26
Community Guided Attachment & Forest Fire Model  (0) 2022.09.26
Structural properties  (2) 2022.09.14
Random Networks  (0) 2022.09.14
Intro & Basic Concepts  (0) 2022.09.06
    'GraphMining' 카테고리의 다른 글
    • Kronecker Graph Model
    • Community Guided Attachment & Forest Fire Model
    • Structural properties
    • Random Networks
    Rohdy
    Rohdy

    티스토리툴바