Rohdy
Rohdy의 study
Rohdy
전체 방문자
오늘
어제
  • 분류 전체보기 (32)
    • 석사 이야기 (0)
    • DL Study (17)
    • Pr4AI Study (1)
    • RecSys (3)
    • GraphMining (9)
    • 논문 (2)

블로그 메뉴

  • 홈
  • 태그
  • 방명록

공지사항

인기 글

태그

  • 대학원
  • 컨택
  • gnn
  • gradientdescent
  • KAIST
  • NeurIPS
  • LinearRegression
  • 시그모이드
  • 연세대
  • 논문요약
  • logistic
  • 대학원준비
  • sigmoid
  • 대학원면접
  • IDGL
  • 로지스틱
  • 대학원입시
  • 데이터사이언스
  • 2020
  • 정보대학원
  • ML
  • 대학원컨택
  • GSDS

최근 댓글

최근 글

티스토리

hELLO · Designed By 정상우.
Rohdy

Rohdy의 study

Introduction to Recommender System
RecSys

Introduction to Recommender System

2022. 8. 31. 13:50

KAIST GSDS 대학원 박찬영 교수님의 수업인 추천시스템 및 그래프 기계학습 수업을 필기입니다.

Goal of Recommender system

  • To identify things the we might like
  • To help people discover new content
  • To discover which things go together
  • To personalize user experiences in response to user feedback

 

History of Recommender system

  • 1990s - First systems(e.g., GroupLens), basic algorithms
  • 2000 ~ 2005 - Research explosion, mainstream applications
  • 2006 - The Netflix prize
  • 2007 - The first Recommender Systems conference
    https://recsys.acm.org/
  • Present - very active research, many applications

 

Problem formulation of Recommender system

  1. Ranking
    • Top-k recommendation problem
    • Don't need to predict the 'ratings' to recommend, we need top-k items
  1.  
  2. Prediction
    • Rating prediction, matrix completion problem
    • misssing rating value in incomplete user-item rating matrix

비어있는 rating 예측 필요

 

Types of Ratings

Explicit feedback

  • Contiuous value
  • Interval-based
  • Binary

Users are not always willing to rate many items

Number of ratings could be small -> spares rating matrices -> poor recommendation quality

 

Missing values

Pre-substitution of missing ratings is not recommended

      -> 어떤 숫자로든 missing values를 처리하면 Signigicant amount of bias 가능성 존재

 

Impicit feedback

  • Unary: 1 type of feedback ex) click or not

Do not requires additional efforts from user

Easy to collect, but less precise

No mechanism to specify a dislike

      -> 책을 구매했다고 해당 책이 꼭 맘에 든다고 할 수 없음, 샀지만 재미없을 수도 있거나 여러 경우의 수 있음

 

Missing values

Recommended to treat the missing entries as 0s to train an algorithm

      -> 0으로 missing values를 처리하지 않으면 Significant overfitting 가능성 존재

 

서로 다른 insight를 제공

 

 

Business-centric goals fo recommender system

Primary goal: Increasing product sales

  1. Relevance: recommend items that are relevant to the user using RMSE, MAE...
  2. Novelty: User has not seen in the past
    ex) 인도음식 즐기던 사람에게 새로운 인도음식점 소개해주기
  3. Serendipity: truly surprising to the user
    user에게 새로운 취향을 제공하면서 장기적으로 benefits이 있을 수 있지만, 관심 없는 items를 추천할 수도 있음
    ex) 인도음식 즐기던 사람에게 한국음식점 소개해주기
  4. Diversity: when all these recommended items are very similar, it increases the risk

Kotkov, Denis, Shuaiqiang Wang, and Jari Veijalainen. "A survey of serendipity in recommender systems." Knowledge-Based Systems 111 (2016): 180-192.

 

'RecSys' 카테고리의 다른 글

Collaborative Filtering Recommendation  (0) 2022.09.07
Content-Based Recommendation  (0) 2022.09.01
    'RecSys' 카테고리의 다른 글
    • Collaborative Filtering Recommendation
    • Content-Based Recommendation
    Rohdy
    Rohdy

    티스토리툴바