Rohdy
Rohdy의 study
Rohdy
전체 방문자
오늘
어제
  • 분류 전체보기 (32)
    • 석사 이야기 (0)
    • DL Study (17)
    • Pr4AI Study (1)
    • RecSys (3)
    • GraphMining (9)
    • 논문 (2)

블로그 메뉴

  • 홈
  • 태그
  • 방명록

공지사항

인기 글

태그

  • GSDS
  • 컨택
  • 데이터사이언스
  • 시그모이드
  • 대학원입시
  • ML
  • 대학원
  • IDGL
  • logistic
  • 대학원컨택
  • sigmoid
  • gnn
  • NeurIPS
  • 로지스틱
  • 정보대학원
  • 대학원면접
  • 대학원준비
  • KAIST
  • LinearRegression
  • 연세대
  • 2020
  • gradientdescent
  • 논문요약

최근 댓글

최근 글

티스토리

hELLO · Designed By 정상우.
Rohdy

Rohdy의 study

Content-Based Recommendation
RecSys

Content-Based Recommendation

2022. 9. 1. 23:22

KAIST GSDS 대학원 박찬영 교수님의 수업인 추천시스템 및 그래프 기계학습 수업 필기입니다.

 

Goal: Recommend items similar to those the user liked

 

When is it useful?

     -> Useful when ratings of other users are not available

 

How to defines similarity?

  • Profile is vector of features and calculate computing similarity

  • How to pick important features?
         -> TF-IDF (Term frequency X Inverse Doc Frequency)

 

Term frequency-Inverse Doc Frequency(TF-IDF)

  • Bag-of-Words: Ecach document is represented by a binary vector
    idf: 특정 term이 등장한 문서의 수
    We can consider the number of accurrences of a term(i.e., Term frequency)
    Cons: Order of words/terms is ignored. Recently, word embedding methods are used e.g., word2vec

  • Term-document count matrix
    tf: 특정 documents에서 특정 term 등장 횟수
    We should also consider the document frequency

 

 

 

Content-based approach: Pros/Cons

  • Pros
    No cold-Start or parsity
    Able to recommend to users with unique tastes
    Able to recommend new and unpopular items
    Able to provide explanations
  • Cons
    Requires content that can be encoded as meaningful features
    Difficult to implement seredipity
    Easy to overfit
    Effective for providing recommendations for new items, but not for new users

Pure content-based systems are rarely found in commercial environments

'RecSys' 카테고리의 다른 글

Collaborative Filtering Recommendation  (0) 2022.09.07
Introduction to Recommender System  (0) 2022.08.31
    'RecSys' 카테고리의 다른 글
    • Collaborative Filtering Recommendation
    • Introduction to Recommender System
    Rohdy
    Rohdy

    티스토리툴바